Гречка. Как варить гречку

Гречка — любимая крупа во многих семьях. Она вкусная, ароматная, легко и быстро варится (хотя варить её совсем не обязательно, достаточно залить гречку тёплой водой и оставить на 1 -1,5 часа. Она как губка впитает всю воду и разбухнет).

Но, так ли полезна привычная нам с детства коричневая гречка? Многие ли слышали, что гречка на самом деле зелёного цвета? Многие люди даже не пробовали зелёную настоящую гречку и не подозревают, насколько она вкусная и питательная.

Врач терапевт, эксперт по здоровому питанию, сертифицированный диетолог МОЗ Украины Татьяна Фиалкова рассказала, интересные факты о самом популярном диетическом продукте.

В пятидесятые годы прошлого века в СССР продавалась сплошь зеленая гречиха. Массово придавать ей загорелый вид начали с подачи Никиты Хрущева, подсмотревшего этот способ в Штатах.

Получается, прежде чем попасть ко мне в тарелку, гречка дважды подвергается термообработке — сначала на заводе, потом на кухне. Что же в ней остается полезного после этого?

Способ гидротермической обработки зерна гречихи.

Для начала я расскажу вам как обрабатывают гречку. Способ обработки зерна гречихи называется гидротермическим. Начали пользоваться этим способом более 50 лет назад. Очищенное зерно гречихи подвергают обжариванию при температуре 170-200oC. Потом увлажняют водой с температурой 90-100oC, пропаривают паром в течении 4-5 минут и затем в изотермических условиях, то есть в термостате выдерживают 1-2 часа. Просушка гречки осуществляется до влажности не более 13,5%. Затем гречку охлаждают до температуры 20oC.

Что же происходит внутри нашей зелёной гречки после такого горячего воздействия?

Исследования гречки после тепловой обработки показывают резкое снижение питательных свойств зерна гречихи. Происходит изменение цвета, запаха, вкуса, структуры и других свойств зерна. Из -за высокой температуры в зернышках разрушается зелёный пигмент хлорофилла, нарушается синтез веществ, ферменты погибают, что приводит к увеличению срока хранения. В зерне происходят многочисленные биохимические и микробиологические изменения, приводящие к инактивации ферментов. Зерно обжаривают также для размыкания перемычек в оболочке и лучшего отделения ее от ядра. Содержание витаминов и микро- и макро-элементов резко уменьшается. Так что, с точки зрения пользы для нашего организма, такую гречку лучше не использовать.

Не имеет смысла говорить о пользе гречки, промышленно обработанной. Всё что пишут о гречке полезного, относится только к зелёной гречке.

Такие зёрна легко прорастить. Необходимо их помыть, залить водой на 2 часа, затем воду слить, промыть и оставить во влажном состоянии на сутки. Вы увидите, как жизнь активируется в зерне и начнёт прорастать. Пророщенная гречка не только сохраняет все питательные полезные свойства, но и благодаря синтезу и биохимическим реакциям, появляются новые полезные соединения. Например, суммарное содержание антиоксидантов в семенах гречихи увеличивается в процессе проращивания в несколько раз. По содержанию витаминов группы В гречке нет равной среди злаков. Кроме того в сырой крупе содержится достаточное количество железа, фосфора, меди, цинка, бора, никеля, кобальта, йода и кальция.

Использование: при производстве гречневой крупы. Сущность изобретения: способ включает очистку зерновой массы, гидротермическую обработку путем увлажнения до 18 - 19% с отволаживанием в течение 2 - 3 ч, пропаривания при давлении пара 0,35 - 0,40 МПа до влажности зерна 23 - 24% и сушки нагретым воздухом до влажности 17 - 18% и охлаждения. После шелушения выделяют ядрицу и досушивают ее нагретым воздухом до влажности 12 - 14% .

Изобретение относится к выработке гречневой крупы и может быть использовано в крупяной промышленности. Известен способ выработки гречневой крупы, включающий очистку зерновой массы гречихи от примеси, гидротехническую обработку перед шелушением, шелушение, разделение продуктов шелушения с выделением ядрицы, контроль крупы и отходов. Гидротермическая обработка (ГТО) заключается в пропаривании гречихи с жесткими режимами, сушке и охлаждении. Зерно с влажностью ниже 12% рекомендуется перед пропариванием увлажнять на 3-4% для повышения эффективности ГТО. Недостатком технологии является малый выход продукта: ядрицы первого сорта 58,0% , второго сорта до 3% . Выход продела высок - 5% . Известен способ, заключающийся также в очистке зерновой массы гречихи от всех видов примесей, гидротермической обработке ее, состоящей из операций пропаривания при давлении пара 0,25-0,30 МПа в течение 5 мин, сушки и охлаждения; далее проводят операцию шелушения и разделяют продукты шелушения с выделением ядрицы. Влажность зерна гречихи перед шелушением составляет 13,5% , увлажнение зерна перед пропариванием не предусматривается. Сушка зерна производится в один этап до кондиционного состояния, обычно в паровых сушилках. Такая технология также не дает высокого выхода ядрицы (он составляет 62% , т. е. повышен на 1% , выход продела на уровне 5%). Данный способ принят за прототип. Целью предлагаемого изобретения является повышение выхода крупы ядрицы при традиционной технологии. Цель достигается тем, что в известной технологии, включающей очистку зерновой массы гречихи от примесей, ее гидротермическую обработку, состоящую из операций пропаривания, сушки и охлаждения, шелушение гречихи, разделение продуктов шелушения с выделением ядрицы, новым является введение дополнительных операций - перед пропариванием зерновую массу увлажняют до 18-19% , отволаживают в течение 2-3 ч, пропаривание ведут при давлении пара 0,35-0,40 МПа до влажности 23-24% , а сушку проводят нагретым воздухом в два этапа - перед шелушением сушат зерно гречихи до влажности 17-18% и после разделения продуктов шелушения досушивают выделенную крупу до влажности 12-14% . Сопоставительный с прототипом анализ указывает на отличия в дополнительных операциях и их режимах, в выполнении одной из операций в два этапа и новой совокупности указанного, что обеспечивает предложению новизну и достижение поставленной цели, так как опыты показали увеличение выхода ядрицы по предлагаемой технологии до 74-75% против 62% и снижение выхода продела с 5% до 0,5% . Промышленная применимость способа обеспечена действующими на гречезаводах линиями ГТО и имеющимися серийным оборудованием для увлажнения, отволаживания, сушки зерна и крупы. Исследования других источников информации также показывает на отличия в режимах операций увлажнения, отволаживания и пропаривания, в проведении операции сушки горячим воздухом в два этапа. Таким образом, предложение обладает существенными отличиями. При традиционной технологии с целью упрочнения структуры ядра и снижения его дробимости производят гидротермическую обработку зерна, заключающуюся в его пропаривании, сушке до 13,5% и охлаждении. Такой прием способствует частичной клейстеризации крахмала, что приводит к вышеописанному эффекту. Гидротермическая обработка способствует повышению общего выхода крупы на 1% , при этом выход продела (дробленой крупы) снижается в 2 раза (5% вместо 10% , получаемых при переработке гречихи без гидротермической обработки). Содержание ядра в гречихе составляет 75% . При общем выходе крупы с гидротермической обработкой 67% потери ядра составляют 8% . Повышению эффективности выделения ядра способствует предварительное увлажнение зерна с отволаживанием перед пропариванием, так как при этом ослабляется связь оболочек с ядром, что способствует повышению коэффициента шелушения. Показано, что с увеличением влажности зерна гречихи перед шелушением дробимость ядра уменьшается. Однако эта закономерность справедлива для варианта сушки зерна подогретым воздухом при увеличении влажности до 17-18% . При достижении зерном влажности более 18% ядро становится мягким и легко разрушается при механических воздействиях. При традиционной гидротермической обработке зерно не достигает влажности 17-18% при пропаривании, в связи с этим в технологию предложено включить предварительное увлажнение зерна до 18-19% с отволаживанием в течение 2-3 ч. Последующим пропариванием при давлении пара 0,35-0,40 МПа достигается влажность зерна на 23-24% , а последующей сушкой влажность зерна мягко доводят до 17-18% . Сушка зерна подогретым воздухом до 17-18% (I этап) оказывает более мягкое воздействие на клейстеризацию крахмала и денатурацию белка, чем, например, сушка ИК-лучами. В связи с этим целесообразно ужесточить режим пропаривания, как указано выше, за счет повышения давления пара. Это приведет к необходимой степени клейстеризации крахмала, а последующая сушка упрочнит структуру ядра. Шелушение подготовленного таким образом зерна при указанной влажности обеспечивает получение крупы почти без дробления ядра. Предлагаемый способ выработки гречневой крупы осуществляют следующим образом. Зерновую массу гречихи очищают от примесей, затем зерно гречихи увлажняют до 18-19% , отволаживают в течение 2-3 ч, подвергают пропариванию при давлении пара 0,35-0,40 МПа и экспозиции 5 мин. Влажность зерна после пропаривания 23-24% . Подготовленное таким способом зерно подвергают сушке подогретым воздухом t = 140-160 о С до влажности зерна после сушки - 17-18% (I этап). Затем зерно шелушат, выделяют ядрицу и подвергают ее сушке подогретым воздухом при той же температуре (II этап). Влажность готовой крупы 12-14% . Выход ядрицы составляет 74-75% , выход продела 0,5% . Способ проверен в полупроизводственных условиях стенда, оборудованного линией переработки гречихи. Проверка способа показала его полную пригодность и целесообразность использования на крупяных предприятиях, вырабатывающих гречневую крупу. П р и м е р 1. Зерно гречихи увлажняют до 17% , отволаживают 1 ч, пропаривают при давлении пара 0,30 МПа и экспозиции 5 мин, Влажность зерна после пропаривания 22% . Затем зерно сушат горячим воздухом до влажности 16,0% и шелушат. После шелушения выделяют крупу, которую подсушивают до 12-14% . Общий выход крупы составил 73,0-73,5% , из них выход ядрицы 68-69% , а выход продела 4,5-5,0% . П р и м е р 2. Зерно гречихи увлажняют до 18% , отволаживают 2 ч, пропаривают при давлении пара 0,35 МПа и экспозиции 5 мин. Влажность зерна после пропаривания 23% . Затем зерно сушат горячим воздухом до влажности 17% и шелушат. После шелушения выделяют крупу, которую подсушивают до 12-14% . Общий выход крупы составил 74,5-75,5% , из них выход ядрицы 74-75% , выход продела 0,5% . П р и м е р 3. Зерно гречихи увлажняют до 19% , отволаживают 3 ч, пропаривают при давлении пара 0,40 МПа и экспозиции 5 мин. Влажность зерна после пропаривания 24% . Затем зерно сушат горячим воздухом до влажности 18% и шелушат. После шелушения выделяют крупу, которую подсушивают до 12-14% . Общий выход крупы составил 74-75% , из них выход ядрицы 74,0-74,5% , выход продела 0,5% . П р и м е р 4. Зерно гречихи увлажняют до 20% , отволаживают 4 ч, пропаривают при давлении пара 0,45 МПа и экспозиции 5 мин. Влажность зерна после пропаривания 25% . Затем зерно сушат горячим воздухом до влажности 19% и шелушат. После шелушения выделяют крупу, которую подсушивают до 12-14% . Общий выход крупы составил 70-71% , из них выход ядрицы 67-68% , выход продела 3% . Наилучшие показатели достигнуты при параметрах, указанных в примерах 2 и 3, т. е. для достижения выхода ядрицы 74-75% зерно следует увлажнять перед пропариванием до 18-19% , отволаживать 2-3 ч, пропаривать при давлении пара 0,35-0,40 МПа до влажности 23-24% , затем сушить горячим воздухом в два этапа - до шелушения - до влажности 17-18% , после выделения ядрицы - до конечной влажности 12-14% . Таким образом, предложенный способ по технологическим показателям переработки зерна превосходит способ-прототип и обеспечивает повышение выхода продукта.

Формула изобретения

СПОСОБ ПРОИЗВОДСТВА ГРЕЧНЕВОЙ КРУПЫ, включающий очистку зерновой массы гречихи от примесей, ее гидротермическую обработку путем пропаривания, сушки и охлаждения, шелушение гречихи и разделение продуктов шелушения с выделением ядрицы, отличающийся тем, что при гидротермической обработке перед пропариванием зерновую массу увлажняют до 18 - 19% и отволаживают в течение 2 - 3 ч, пропаривание ведут при давлении пара 0,35 - 0,40 МПа до влажности зерна 23 - 24% , сушку проводят нагретым воздухом до влажности 17 - 18% , а после разделения продуктов шелушения выделенную ядрицу досушивают нагретым воздухом до влажности 12 - 14% .

В 1968 - 1975 гг. ВНИЭКИпродмаш предложил и осуществил при участии Миргородской МИС новый способ (технологию) выработки гречневой крупы.

Новый способ выработки гречневой крупы включает очистку и шелушение несортированного по размерам на фракции зерна. Шелушеные зерна от нешелушеных отделяются на ячеистых сортировочных столах после предварительного удаления оболочек, мучки и дробления.

Чтобы улучшить качество и сортность крупы, а также увеличить ее выход, несортированное по размерам зерно последовательно четырехкратно шелушат на обрезиненных валках. На последующие машины после шелушения подают верхние сходы, полученные после сортирования зерна, а крупу извлекают последовательно в несколько этапов, сортируя обогащенную смесь на крупоотделительных машинах. При этом верхний сход, полученный после сортирования, направляют на контроль, а нижний сход последнего этапа крупоотделения - в первую зону сортирования. Кратность шелушения и соответственно число этапов крупоотделения равны четырем.

Такой способ выработки гречневой крупы позволяет значительно уменьшить внутризаводской оборот продукта, повысить производительность и эффективность технологического процесса выработки крупы.

На чертеже изображена схема для осуществления способа (рис. 1). Обрабатываемое зерно (гречиха) поступает на 1-ю систему шелушения 1У включающую машины с обрезиненными валками типа ЗРД. С 1-й системы продукты шелушения направляются на рассев 2.

С сит с отверстиями ф 4 мм рассева 2 после провеивания на аспираторе 3 продукт направляют на сортировочную машину 4 с возвратно-поступательным движением сит для отделения посторонних примесей и дополнительного выделения шелушеного зерна.

Рис. 1. Новая технологическая схема производства гречневой крупы:

1, 5, 13, 19 - соответственно 1-, 2-, 3-, 4-я системы шелушения; 2, 10, 16, 21 - рассевы; 3, 11, 17 - аспираторы с замкнутым циклом воздуха; 4, 12, 18 - сортировочные машины; б, 7, 8, 14, 15, 20, 22 - крупоотделительные машины

С сит с отверстиями ф 4 мм сортировочной машины 4 продукт поступает на 2-ю систему шелушения 5. Сход с сит с отверстиями размером 1,7 х 20 мм рассева 2 и сортировочной машины 4, обогащенный продуктами шелушения (содержание ядра 90...95 %), полученными после сита с отверстиями ф 4 мм, направляется на крупоотделительные машины 6 с ячеистыми столами (I этап отделения ядрицы), колеблющимися с частотой не более 3,3 с-1(200 об/мин). Выделенная ядрица направляется на контрольные крупоотделительные машины 7, а продукт, получаемый нижним сходом с крупоотделительных машин 6, направляется на крупоотделительные машины 8 (II этап отделения ядрицы). Продукт верхнего схода крупоотделительных машин 6 и 8 идет для дополнительного контроля на сортировочную машину 9, откуда сход с сита с отверстиями размером 1,7 х 20 мм поступает на контрольные крупоотделительные машины 7. После 2-й системы шелушения 5 продукты направляются на рассев 10. Сход с сита с отверстиями 0 4 мм рассева 10 после провеивания на аспираторе 11 и просеивания на сортировочной машине 12 поступает на 3-ю систему шелушения 13. Продукт, идущий сходом с сит с отверстиями размером 1,7 х 20 мм рассева 10, направляется на крупоотделительные машины 14. После крупоотделения продукт верхнего схода (ядрица) поступает на контрольные системы крупоотделительных машин 7, а нижние схода - на крупоотделительные машины 15. После 3-й системы шелушения 13 продукты поступают на рассев 16. Сход с сита с отверстиями ф4 мм рассева 16 после провеивания на аспираторе с замкнутым циклом воздуха 17 и просеивания на сортировочной машине 18 поступает на 4-ю систему шелушения 19. Сход с сита с отверстиями размером 1,7 х 20 мм рассева 16 вместе с продуктом, поступающим от сортировочной машины 12, направляется на крупоотделительные машины 20 (III этап крупоотделения). После крупоотделения продукт верхнего схода (ядрица) поступает на контрольные крупоотделительные машины 7, а нижние схода - на крупоотделительные машины 15 либо 22. Продукты шелушения машины 19 направляются на рассев 21. Сход с сита с отверстиями ф 4 мм рассева 21 возвращается на рассев 2. Сход с сита с отверстиями размером 1,7 х 2,0 мм рассева 21 поступает на крупоотделительные машины 22. После крупоотделительных машин 22 продукт верхнего схода (ядрица) направляется на выбой, а нижнего схода-на рассев 2. Лузга, отвеиваемая на аспираторах 3, 11 и 17, направляется на контроль (на чертеже не показан). Мучка и дробленка, высеиваемые на рассевах 2, 10, 16 и 21 и сортировочных машинах 4, 9, 12 и 18, также поступают на контроль.

Ввиду того что размеры зерен гречихи колеблются в широких пределах, технологический процесс гречезавода в настоящее время предусматривает обязательное сортирование (предварительное и окончательное) гречихи на шесть фракций с помощью рассевов или крупосортировочных машин с последующим шелушением каждой фракции гречихи отдельно на вальцедековых станках. Ядрицу выделяют также пофракционно на рассевах, что требует развитого технологического процесса. В этом заключаются основные особенности существующего технологического процесса выработки гречневой крупы.

При подготовке зерна гречихи к переработке в крупу после очистки ее подвергают гидротермической обработке, включающей операции пропаривания, сушки, охлаждения.

Аппарат для пропаривания зерна с автоматическим управлением А9-БПБ предназначен для обработки паром гречихи, проса, овса, пшеницы, риса и др.

Корпус аппарата служит сосудом для пропаривания зерна. Внутри корпуса расположен змеевик для равномерного распределения пара. Корпус смонтирован на станине. На крышке установлен загрузочный затвор. Загрузочный и разгрузочный затворы снабжены самостоятельными приводами. Электрооборудование аппарата состоит из электроприводов затворов, конечных выключателей, фиксирующих поворот пробок затворов на 90°, сигнализатора уровня, контролирующего верхний и нижний уровни зерна при загрузке и выгрузке аппарата, двух клапанов с электроприводами для подачи и выпуска пара, пульта управления.

Пульт управления предназначен для дистанционного автоматического управления основными операциями. Электросхемой предусмотрены два режима управления работой аппарата: ручной и автоматический. Ручной режим служит для наладки работы аппарата, отработки операций, доработки продукта в аварийных ситуациях и для управления работой аппарата при отказе автоматики. Основной режим работы - автоматический.

Зерно загружается в сосуд аппарата, пропаривается в течение 1 ...6 мин в зависимости от вида зерна и выгружается через разгрузочный затвор.

Приемочные испытания аппарата А9-БПБ проведены в гидротермическом отделении гречецеха Брянского комбината хлебопродуктов. При испытаниях аппарат был настроен на режим работы, рекомендованный по результатам первого этапа испытаний: отсчет времени пропаривания проводился с момента пуска пара в сосуд аппарата. Кроме того, продолжительность цикла была сокращена за счет более рационального совмещения операций: открытие клапана впуска пара и пропаривание; пропаривание и закрытие клапана впуска пара; открытие клапана выпуска пара, выпуск пара. Время цикла при этом составило 492 с. Испытания показали, что при давлении в паропроводе 6 105 Па набор заданного давления в сосуде происходит за 1 мин 45 с.

Качество пропаривания на заданном режиме в ходе испытаний аппарата А9-БПБ контролировали как по равномерности нагрева и увлажнению зерна, так и по цвету, вкусу и запаху полученной крупы.

Проведенные испытания подтвердили, что неравномерность (отклонение между крайними значениями показателей) распределения влажности в зерне изменяется в пределах 0,3...1,6%. Этот же показатель по среднеарифметическому значению не превышает 0,2...0,3 %. Влажность гречихи в результате пропаривания в среднем увеличилась на 3,7...4,4% (размах колебаний от 3,4 до 4,9 %). Следовательно, увлажнение зерна по всему объему сосуда аппарата происходит достаточно равномерно. Данные, полученные при испытаниях, приведены в таблице 6.

Годовой экономический эффект от использования одного аппарата А9-БПБ взамен пропаривателя Г.С. Неруша составляет 4 тыс. р.

Другой эффективный аппарат в схеме гидротермической обработки гречихи - сушилка паровая А1-БС2-П.

Сушилка паровая А1-БС2-П предназначена для сушки зерна крупяных культур, прошедшего гидротермическую обработку. Сушилка состоит из следующих основных частей: зерноприемника, секций нагревательных, разгрузочной секции с приводом.

Зерноприемник служит для равномерного распределения зерна по длине сушилки. Он представляет собой стальной короб размерами 198 х 376 х 650 мм. На крышке зерноприемника расположены два приемных патрубка. Для поддержания постоянного уровня зерна имеются электронные датчики уровня.

Нагревательные секции служат для сушки зерна теплом, отдаваемым паром через поверхность нагрева. Каждая секция состоит из коллектора, имеющего две камеры - паровую и конденсационную, в которые вварены в шахматном порядке цилиндрические и овальные трубы (по 21 трубе на секцию). Цилиндрические бесшовные трубы, проходящие внутри овальных, связаны с паровой, а овальные - с конденсационной камерами.

Коллекторы нагревательных секций соединены между собой патрубками-калачами, подающими пар и конденсат из верхних секций в нижнюю. С обеих сторон внутри нагревательных секций расположены наклонные скатные плоскости, которые предотвращают высыпание зерна из сушилки и одновременно образуют каналы для циркуляции воздуха.

Для осмотра, очистки и ремонта деталей, находящихся внутри сушилки, в секциях с двух сторон расположены дверки. Каждая нагревательная секция имеет с одной стороны 60 отверстий ф 20 мм (по 15 на одной дверке) для подсоса в сушилку наружного воздуха, а с противоположной стороны - диффузоры, для удаления увлажненного воздуха из сушилки. Количество отсасываемого воздуха из каждой нагревательной секции регулируют, изменяя размеры выходной щели. Секция разгрузочная служит основанием, на котором монтируются нагревательные секции.

Несущей конструкцией всех десяти нагревательных секций служат две опоры, находящиеся на раме по обе стороны сушилки. В разгрузочной секции предусмотрены восемь бункеров и цепной конвейер, который состоит из двух цепей, соединенных между собой скребками. Верхние ветви конвейера движутся по направляющим, а нижние - по дну, представляющему собой выдвижные поддоны. Привод цепного конвейера осуществляется от электродвигателя через червячный редуктор. Скорости цепного конвейера регулируют вариатором посредством маховичка.

После гидротермической обработки зерно поступает в зерноприемник, откуда под действием силы тяжести опускается вниз в нагревательные секции. Для удаления влаги из зерна в сушилке используется принцип контактной сушки, т. е. тепло передается зерну непосредственно от нагретой поверхности овальных труб, между которыми оно движется. Испарившаяся из зерна влага поглощается воздухом и вместе с ним удаляется из сушилки. Пройдя нагревательные секции, просушенное зерно поступает в бункера разгрузочной секции и выходит на площадки, с которых снимается скребками цепного конвейера и нижней его ветвью транспортируется к выходному отверстию.

Производительность сушилки и экспозиция сушки зерна зависят от скорости движения цепного конвейера, регулируемой клиноременным вариатором.

Для нагрева труб нагревательных секций используют сухой насыщенный пар. Давление пара в трубах и его температуру регулируют редукционным клапаном. Давление пара в сушилке контролируют манометром. Отработанный пар и конденсат из сушилки выводятся через конденсатоотводчик.

Техническая характеристика сушилки А1-БС2-П

Производительность на зерне с натурой 570 г/л при 56...60

снижении влажности пропаренного зерна на 7...9 %, т/сут

Расход пара на 1 т %, кг/ч 5 5 0.. .65 0

Давление пара, Па До 3,43 105

Расход воздуха на 1 т%. влагосъема, м3 /ч 200

Аэродинамическое сопротивление, Па 137,2

Скорость движения цепи конвейера при проектной 0,061...0,067

производительности, м/с

Электродвигатель привода вентилятора ВЦП № 6:

мощность, кВт 7,5

частота вращения, с-1 (об/мин) 24,3 (1460)

Электродвигатель привода конвейера:

мощность, кВт 1,1

частота вращения, с-1 (об/мин) 15,5 (930)

Редуктор:

тип РЧУ-80

передаточное число 31

Габариты, мм:

ширина 810

высота 8100

Масса, кг 5760

Новый способ выработки гречневой крупы испытывали на крупяном заводе Брянского мелькомбината хлебопродуктов. Плановая суточная производительность завода в период испытаний была 125 т/сут при базисном выходе крупы 66 %.

Во время испытаний кинематические параметры основного технологического оборудования характеризовались следующими величинами:

шелушильные машины с обрезиненными валками А1-ЗРД (четыре системы) - окружная скорость быстроходных валков 9... 12 м/с и отношение окружных скоростей быстроходных валков к тихоходным 2,0... 2,25;

рассевы ЗРМ (четыре системы) - частоты колебаний ситовых корпусов 2,3...2,6 с-1 (140...156 об/мин) и радиусы круговых колебаний корпусов 25 мм;

крупосортировки А1-БКГ (три системы) - частота колебаний ситовых корпусов 5,3...5,6 с-1 (320...340 об/мин) и амплитуда 9 мм;

крупоотделители А1-БКО-1,5 (шесть основных систем и две контрольные) -частота колебаний сортировочных дек 2.8...3 с-1 (170... 185 об/мин) и амплитуда 28 мм.

Технологические показатели работы машин А1-ЗРД на шелушении зерна гречихи свидетельствуют о том, что коэффициент шелушения был не ниже достигаемого в практике при шелушении гречихи на вальцедековых станках. В то же время количество дробленого ядра по отношению к массе продукта, поступающего в машину, на всех системах не превышало 1,14%, что значительно ниже получаемого в практике (2...3%) и предусмотренного Правилами организации и ведения технологического процесса на крупяных заводах (1,5...2,5 %) при шелушении гречихи на вальцедековых станках. Коэффициент цельности ядра в среднем составил 0,96.

Количество продукта, поступающего на машины А1-ЗРД при работе их с производительностью до 3000 кг/ч, на качество шелушения практически не влияет.

Продукты шелушения после машины А1-ЗРД каждой системы поступают на рассевы для выделения ядра, продела и мучки. Кроме этих продуктов, на рассевы 1-й, 2-й и 3-й систем поступали нижние схода соответствующих крупоотделительных машин.

После сортирования на рассевах проходом через сита с отверстиями ф 4,0 мм и сходом с сит с размерами отверстий 1,7 х 20 мм получали продукт с незначительным содержанием нешелушеного зерна, который после провеивания направляли для отделения ядрицы на крупоотделительные машины А1-БК0. Продукт, полученный сходом с сит с отверстиями ф 4,0 мм и содержащий значительное количество нешелушеного зерна, после провеивания и дополнительного просеивания на крупосортировках, где от него отбирали еще некоторое количество ядра, подавали на машины А1-ЗРД последующей системы шелушения.

Работа рассевов на сортировании продуктов шелушения гречихи характеризуется тем, что сходом с сит с отверстиями Ø4,0 мм получают 65,8... 74,9 % продукта от общего количества с содержанием в нем 26...34,24 % ядра. Продукт, полученный сходом с сит с отверстиями размером 1,7 х х 20 мм, состоит в основном из ядра с содержанием в нем нешелушеного зерна до 9,6 %.

При сортировании продуктов шелушения на рассевах и крупосортировках содержание нешелушеных зерен и сорной примеси возрастает по мере движения продукта по системам.

Из схода (сита с отверстиями Ф4 мм) рассевов после предварительного провеивания дополнительно выделяли на крупосортировках от 10 до 19,3 % ядра. Содержание нешелушеных зерен в этом продукте в зависимости от системы составляло от 5,36 до 7,68%. Схода сит с отверстиями Ø 4 мм, поступившие на машины А1-ЗРД, составляли 80...90% и содержали 27,80...30,00% ядра, что свидетельствует о возможностях дальнейшего совершенствования процесса сортирования продуктов шелушения.

Ядрицу из продукта, полученного сходом с сит с отверстиями размером 1,7 х 20 мм на рассевах и проходом через сита Ø4,0 мм, на крупосортировках извлекали на крупоотделительных машинах А1-БКО. При этом машины б, 14, 20, 8 и 15 работали на предварительном извлечении ядра, а машины 7 и 22 - на окончательном контроле крупы.

Технологические показатели, характеризующие работу крупоотделительных машин на предварительном извлечении ядра и окончательном контроле крупы, показывают, что в верхний сход поступало 40,0...58,8 % (коэффициент извлечения) от исходного продукта. При этом содержание нешелушеных зерен в верхнем сходе находилось в пределах 0,32...0,52 %.

Анализ работы крупоотделительных машин показывает, что имеются определенные резервы в повышении эффективности их работы. Работавшие на контроле верхних сходов крупоотделительные машины обеспечивали получение гречневой крупы, отвечающей требованиям первого сорта. При этом извлекалось до 51 % крупы от общего количества продукта, поступавшего на эти крупоотделители. Необходимо отметить, что при работе крупоотделительных машин А1-БКО на предварительном и окончательном контроле крупы в верхний сход поступало незначительное количество сорной примеси, несмотря на большое ее содержание в исходном продукте. Основное количество сорной примеси поступало в нижние схода.

В результате длительных технологических испытаний и определения качественно-количественных показателей работы основного оборудования установлено, что главное преимущество нового способа выработки крупы по сравнению с применяемой технологией - уменьшение дробления

ядра в процессе переработки гречихи в крупу и увеличение ее общего выхода.

Это подтверждается также сравнением выходов крупы (табл. 2), полученных при переработке близкой по качеству гречихи (новый способ и существующая технология).

Повышенный выход крупы первого сорта и общий выход крупы при новом способе ее выработки получен за счет уменьшения дробления ядра.

Используя данные, полученные при сравнительных испытаниях существующей и новой технологий выработки гречневой крупы, можно определить итоговую разницу всех видов круп, полученных из одной тонны гречихи (табл. 3). Из таблицы следует, что в результате улучшения сортности крупы и увеличения общего ее выхода стоимость крупы при новом способе возрастает на 16,75 р. (367,82 - 351,07). За сопоставимый годовой объем переработки гречихи в сравниваемых вариантах принято 37770 т.

Экономический эффект в результате улучшения сортности и увеличения выхода крупы составит 37 770 16,75 0,692 = 437 792 р. в год. Одновременно с этим эксплуатационные расходы в результате замены изнашиваемых обрезиненных валков на шелушильных машинах А1-ЗРД (из расчета срока службы одной пары валков в течение лишь 70 ч) увеличиваются на 40832 р. Общий экономический эффект от использования нового способа выработки гречневой крупы на одном крупяном заводе производительностью 125 т/сут составит 396 960 р. (437792-40832).

На основе проведенных испытаний нового способа выработки гречневой крупы Харьковский ПЗП разработал проект реконструкции грече- завода с увеличением его производительности до 160 т/сут и выхода крупы до 70 %, в котором использованы шелушильные машины с обрезиненными валками А1-ЗРД, крупоотделительные машины А1-БКО, аспираторы с замкнутым циклом воздуха, рассевы, крупосортировки и др.


Гречиха является одним из основных видов зерна для крупяных заводов.
Из нее вырабатывают:
- крупу ядрицу - целые, неколотые ядра гречихи, освобожденные от плодовых оболочек;
- продел - частицы ядра, освобожденные от оболочек, расколотые в процессе обработки;
- крупу Смоленскую - дробленая крупа - ядрица, вырабатывают по особому распоряжению.
- крупу коричневую - выработанную по особым распоряжениям. Она представляет собой ядрицу, подвергшуюся дополнительной гидротермической обработке;
- муку гречневую диетическую - побочный продукт при выработке Смоленской крупы. Ее также специально вырабатывают из ядрицы.
Процесс переработки гречихи в крупу состоит из следующих последовательных технологических операций:
- очистка зерна от примесей двукратным пропуском через сепараторы, через триеры (в тех случаях, когда гречиха засорена овсюгом или содержит зерна пшеницы и ржи) и через камнеотделительные машины;
- гидротермическая обработка очищенного зерна пропариванием его в специальных пропаривателях, сушка с доведением влажности до 13,5% и охлаждение;
- предварительное сортирование на крупосортировочных машинах БКГ на два потока (крупного и мелкого зерна);
- окончательное сортирование на шесть фракций с последующей самостоятельной переработкой каждой фракции в отдельности. Сита для окончательного сортирования гречихи на фракции должны иметь следующие размеры.


Гречиху шелушат на двухдековых 2ДШС-ЗБ или однодековых СВУ-2 шелушильных станках.
Режим работы шелушильных станков устанавливают так, чтобы после пропуска гречихи количество шелушеных зерен было не меньше, чем указано ранее.
Должен быть организован промежуточный отбор ядра с просеиванием продуктов шелушения. Эту операцию проводят на крупосортировочных машинах БКГ.
Шелушеные зерна после дополнительного пропуска через сортировочные машины, где выделяется мучка и продел, направляют (после контроля) в. готовую крупу. Смесь нешелушеных зерен и лузгу провеивают для отделения лузги и направляют на повторное шелушение.
Вырабатываемая крупа должна, отвечать следующим нормам качества: содержание доброкачественного ядра в ядрице первого сорта должно быть не менее 99,2%, второго сорта 98,3% и в проделе 98,3%, в том числе битых зерен в первом сорте должно быть не более 3,0% и во втором - 4,0%. Количество нешелушеных зерен в первом сорте не более 0,3%, во втором сорте 0,4% и в проделе 0,1%.
Нормы выходов и отходов при переработке гречихи базисных кондиций приведены в таблице 41.

Кроме гречневой крупы, из ядрицы вырабатывают диетическую гречневую муку. Для этого ядрицу дополнительно очищают на зерноочистительных машинах, подвергают мойке в теплой воде (с температурой 35-40°С) с последующим подсушиванием до 10% и измельчают двукратным пропуском через вальцовые станки. Крупность диетической муки характеризуется остатком на шелковом сите № 27 не более 2% и проходом через шелковое сито № 38 не менее 60%.

Сегодня мы поговорим еще об одном уникальном продукте – зеленой гречке. «А-а – скажете вы, — знаем гречку, еще с детства!» Да, знаем. Но то, что ее уникальность именно в ее «зелености» – об этом знают далеко не все!

В 20-м веке гречиха получила широкое признание за рекордное содержание витаминов, микроэлементов, полноценных белков, необходимых для здоровья человека, за что ее стали называть «царицей круп»

Весь этот перечень питательных веществ есть в сырой, зеленой гречке, очищенной по специальной технологии. После такой обработки ядрица гречки остаются живыми, не теряя способности прорастать!

Сохранение пищевой ценности гречневой крупы зависит от технологии переработки зерна. Решающую роль в технологическом процессе имеет гидротермическая обработка зерна: в результате теплового воздействия насыщенным водяным паром при четко заданном давлении пара, крупа приобретает свой коричневый оттенок.

Некоторые производители зерно пропаривают при очень жестких режимах, что приводит к распаду и потере количественного содержания витаминов, гречка становится темной, с коричневым оттенком. Такая крупа быстро разваривается, что потребитель и переработчик оценивают как достоинство. Но в результате подобной обработки гречка теряет все то, чем так богата! И нашему организму приходиться тратить свои собственные силы на выработку витаминов и микроэлементов из этого «убитого» высокой температурой материала.

Ни для кого не секрет, что температура 40 градусов по Цельсию – тот порог, после которого начинают уничтожаться витамины и минералы, которые содержались в сыром продукте. Еще в пятидесятые годы прошлого века в СССР продавалась зеленая гречка. Массово придавать ей загорелый вид начали с подачи Никиты Хрущева, подсмотревшего этот способ в Штатах.

Гречка экологически чистое растение

Она неприхотлива к почвам, ее выращивают без химических удобрений. Гречневая культура не боится сорняков, самостоятельно вытесняя их с поля, без применения пестицидов. Генетически модифицированной гречки в природе не существует —она не поддается генной модификации .

Рассмотрим свойства и ценность зеленой гречки, которая лидирует в рейтинге полезных круп. Термически обработанная крупа в той или иной степени теряет многие полезные свойства. Поэтому, если хотите получить максимальную пользу от этого продукта – ищите именно зеленую гречку в магазинах здорового питания, либо сделайте ее заказ через интернет.

Зеленая гречка польза

Зерна гречки в своем составе содержат 13 – 16% белка высочайшего качества, ценность которого определяется наличием незаменимых аминокислот, которые не синтезируются в организме человека. По биологической ценностибелок гречки равен белку мяса, рыбы, яиц.

В состав гречневых зерен входят флавоноиды , в том числе рутин – антисклеротический витамин, улучшающий состояние кровеносных сосудов, по концентрации которого гречка превосходит другие культуры. В соединительных тканях рутин укрепляет мельчайшие кровеносные сосуды, поэтому свежая гречиха крайне полезна при различных заболеваниях сосудов, ревматических заболеваниях и артритах.

В гречке в 3–5 раз больше микроэлементов, чем в других крупах . Особенно высоко содержание в этой крупяной культуре железа (доставка кислорода к клеткам), калия (помогает поддерживать оптимальное кровяное давление), кальция, фосфора (для опорно-двигательного аппарата), магния (помогает справиться с депрессией) и йода . Также в гречке содержатся кремний, селен, медь, цинк, фтор и другие макро- и микроэлементы.

Органические кислоты , которыми гречка очень богата, являются катализаторами усвоения пищи.

Антиоксидантные свойства гречихи защищают продукт от прокисания в большей степени, чем все другие виды зерновых. Гречневая зеленая крупа не прогоркает при длительном хранении, не плесневеет при повышенной влажности. Суммарное количество антиоксидантов при прорастании гречихи достигает 383мг/100гр., витамина С – до 26мг/100гр.

Питательные вещества, представленные в составе гречки, каждый по отдельности имеет определенную ценность. Кроме этого, здесь они работают взаимосвязано, участвуя в важных процессах жизнедеятельности организма — их комплексное сочетание благотворно влияет на работу практически всех систем и органов.

Благодаря своему уникальному составу, кроме общего укрепляющего действия, семена гречки повышают уровень гемоглобина, укрепляют стенки кровеносных сосудов, уменьшают ломкость капилляров . Они рекомендованы для профилактики и как вспомогательное средство при лечении различных заболеваний сосудов, анемии, сахарном диабете, хронических стрессах.

Наибольшая польза от гречки будет в том случае, если вы оставите ее живой, без термической обработки, сохранив все витамины, минералы, все те полезные вещества, которыми она так богата. Вы спросите – как же ее тогда есть, такую живую!? Соглашусь, мы привыкли к другому: большая тарелка наваристой гречневой каши…. Можно и так.

А можно добавить к своему обычному рациону пару столовых ложек зеленой гречки, предварительно замочив ее в воде. Тогда любое ваше блюдо (салат, йогурт или творог), по обилию питательных компонентов в нем, превратится в царское.

, добавляет новые полезные свойства. И многие даже не подозревают, что гречка не только вкусная каша, но и настоящий эликсир здоровья!

Чтобы получить пророщенные семена гречки, времени понадобится чуть больше, чем для других культур. Но, на то она и царица, что требует к себе повышенного внимания!

Пророщенная зеленая гречка

Промываем зерна, заливаем их водой и замачиваем на 2-3 часа. Затем сливаем воду, снова промываем (можно использовать сито), при этом мы избавляемся от веществ, которые препятствуют прорастанию, и слизи.

Накладываем гречку в емкость для проращивания (например, стеклянная банка) накрываем негерметичной крышкой (для доступа воздуха и сохранения влажной атмосферы), кладем ее на бок, рассыпая зерна, и оставляем на сутки — обычно к этому времени проклевываются росточки. Наиболее полезными свойствами обладают семена гречи на 2-4 сутки.